Study of Low-Temperature-Combustion Diesel Engines
نویسنده
چکیده
Fuel cells have been recognized as a feasible alternative to current IC engines. A significant technical problem yet to be resolved is the on bound fuel supply before fuel cells can be practically used for vehicles. Use of an on-board fuel reformer can mitigate the fuel supply issue. In particular, using a diesel engine as on-board fuel reformer, combined with a fuel cell, is a strong candidate for the next generation power plant for vehicles. This study investigates feasibility of using a diesel engine as a fuel reformer. To supply the hydrogen and carbon monoxide for Solid Oxide Fuel Cell (SOFC), a primary Low-Temperature-Combustion (LTC) technology diesel engine using will burn fuel-rich mixture to provide the high temperature combustion products necessary for SOFC. This study models the ignition properties of the fuel-rich mixture, and then applies the model to estimate operation map of a LTC diesel engine. This research provides useful design for the combined cycle prove plant. Thesis Supervisor: Wai K. Cheng Title: Professor of Mechanical Engineering
منابع مشابه
Numerical study of the effect of fuel injection timing on the ignition delay, performance parameters and exhaust emission of gas/dual fuel diesel engine using Computational Fluid Dynamics
Today, due to the various usage of compression ignition engines in urban transportation, as well as the need to reduce exhaust emissions and control fuel consumption, the use of alternative fuels has become common in diesel engines. Gaseous fuel is one of the most common alternative fuels that can be used in diesel engines. The utilization of alternative fuels in compression ignition engines re...
متن کاملModeling of Heat Losses Within Combustion Chamber of Diesel Engines
The cylinder working fluid mean temperature, rate of heat fluxes to combustion chamber and temperature distribution on combustion chamber surface will be calculated in this research. By simulating thermodynamic cycle of engine, temperature distribution of combustion chamber will be calculated by the Crank-Nicolson method. An implicit finite difference method was used in this code. Special treat...
متن کاملDevelopment of a Mathematical Model for Prediction of Pollutants Emission in D. I. Diesel Engines
Major pollutants emission from Direct-Injection (D.I) diesel engines are predicted by means of a mathematical model. In order to construct such a model, an integral Multi-Zone Combustion Model (MZCM) is formulated, which basically consists of jet mixing and combustion submodels. In MZCM, variation of injection pressure is considered. Also time period of ignition delay is predicted by considerin...
متن کاملThree-Dimensional Modeling of Combustion Process, Soot and NOx formation In a Direct-injection Diesel Engine
This paper is presented to study the combustion process and emissions in a direct injection diesel engine. Computations are carried out using a three-dimensional model for flows, sprays, combustion and emissions in Diesel engines. Interactions between combustion and emissions with flow field are considered and it is shown that soot mass fraction increases at regions with low turbulence inten...
متن کاملTheoretical and Experimental Analysis of OM314 Diesel Engine Combustion and Performance Characteristics Fueled with DME
Homogeneous Charge Compression Ignition (HCCI) combustion is a pioneer method of combustion in which pre-mixed fuel and oxidizer (typically air) are compressed to the point of auto-ignition. HCCI engines can operate with most alternative fuels, especially, dimethyl ether (DME) which has been tested as a possible diesel fuel due to its simultaneously low NOx and PM emissions. In this paper a ...
متن کامل